0	lv	e	:

The height of a cake varies directly as the amount of batter available and inversely as the base SCORE: _____/15 PTS area of its baking pan. Baking 2 cups of batter in a 24 square inch pan results in a 3 inch tall cake. How much batter is needed for a 3 inch tall cake in a 32 square inch pan?

FOR FULL CREDIT, YOU MUST IDENTIFY WHAT ALL YOUR VARIABLES REPRESENT, FIND THE SPECIFIC EQUATION CONNECTING THEM, AND SUMMARIZE YOUR FINAL ANSWER IN A SENTENCE USING THE CORRECT UNITS OF MEASUREMENT.

h= HEIGHT OF CAKE
b= AMOUNT OF BATTER

$$a=$$
 AREA OF PAN
 $h=\frac{kb}{a}$ $h=\frac{36b}{a}$
 $3=\frac{k(2)}{24}$ $3=\frac{36b}{32}$
 $k=36$ $b=2\frac{2}{3}$

Subtract and simplify:
$$\frac{x+5}{x^2+7x+12} - \frac{x+6}{x^2+6x+8}$$
 $\frac{x^2+7x+12}{x^2+6x+8} = \frac{x+2}{(x+2)(x+4)}$ SCORE: _____/15 PTS
$$= \frac{x+5}{(x+3)(x+4)} + \frac{x+2}{x+2} + \frac{x+6}{x^2+6x+8} + \frac{x^2+7x+12}{x^2+6x+8} = \frac{x^2+7x+12}{(x+2)(x+4)} + \frac{x+3}{x+3}$$

$$= \frac{x^2+7x+10-(x^2+9x+18)}{(x+2)(x+4)} + \frac{x+3}{x+3}$$

= -2(x+4)

(x+2)(x+3)(x+4)

Subtract and simplify:

= -2x - 8

(x+2)(x+3)(x+4)

 $x^{2}+7x+12=(x+3)(x+4)$

(x+2)(x+3)

SCORE: / 15 PTS

SCORE: / 15 PTS

 $x^2 + x - 6 = (x + 3)(x - 2)$

$$4=\times$$
 $x=\pm 2$

X = -2

 $\frac{5}{r^2 + r - 6} + \frac{1}{r^2 + 6r + 9} = \frac{1}{r - 2}$ CHECK YOUR ANSWER(S).

Solve for *x*:

$$x = \pm 2$$

$$= -4 + 1 = -2$$

Solve:

SCORE:

$$\frac{63}{x-1} = \frac{63}{x-1} = \frac{6$$

$$\frac{63}{x} = \frac{63}{x-1} - 4$$

$$\times (x-1) \left(\frac{63}{x}\right) = \left(\frac{63}{x-1} - 4\right) \times (x-1)$$

$$63(x-1) = 63 \times -4 \times (x-1)$$

 $363x-63=63x-4x^{2}+4x$ $4x^{2}-4x-63=0$ (2x-9)(2x+7)=0 $x=\frac{9}{2},-\frac{7}{2}$

Find the equation of the horizontal asymptote of
$$y = \frac{5-9x}{15x-10}$$
. Simplify your answer.

X===

SCORE: /8 PTS

Divide and simplify:
$$\frac{27x^2 - 48}{20x^2 - 30x^3} \div \frac{18x - 24}{15x^2 - 10x}$$
SCORE: _____/15 PTS

$$-10x^{2}(3x-2) \quad 6(3x-4)$$

$$= 3(3x-4)(3x+4) \quad 5x(3x-2)$$

$$-10x^{2}(3x-2) \quad 6(3x-4)$$

$$-10x^{2}(3x-2) \quad 5x(3x-2)$$

$$-10x^{2}(3x-2) \quad 5x(3x-4)$$

$$-2x^{2}(3x-2) \quad -2x^{2}(3x-2) \quad -2x^{2}(3x-2)$$

$$-2x^{2}(3x-2) \quad -2x^{2}(3x-2) \quad -2x^{2}(3x-2)$$

Simplify:
$$\frac{x-6}{4-6} \times (x-6) \times (x-2) \times (x-2$$

(x-6)(x-2)

$$\frac{4x - 8 - 6x + 3}{4x - 2x(x - 14)}$$

4x-8-6x+36

-7x+28

Subtract and simplify:
$$\frac{7x^2 - 9x - 8}{x^2 - 3x - 10} - \frac{5x^2 - 2x + 7}{x^2 - 3x - 10}$$

$$= 2 \times 2 - 7 \times - 15$$
SCORE: _____/15 PTS

$$x^{2}-3x-10$$
=\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)

$$(-5)(2x+3)$$

Solve for x in the following similar triangles:

Simplify:
$$\frac{6x^2 - 11x + 3}{9x^2 + 3x - 2}$$

$$= \frac{(3x - 1)(2x - 3)}{(3x - 1)(3x + 2)}$$

$$= 2x - 3$$
SCORE: ____/12 PTS